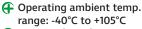

100QBRW4_3 series

100W - Single Output DC-DC Converter - Wide Input - Isolated & Regulated


DC-DC Converter

100W

High efficiency up to 91%Low no-load power consumption

Reinforced insulation, input - output isolation test voltage: 3kVAC, input - case isolation test voltage: 2.1kVAC

Input under-voltage protection, output short-circuit, over-current, over-voltage,

over-temperature protection
Industry standard 1/4 brick
EN50155 approved

100QBRW4_3 series is a high-performance product specifically designed for a variety of railway applications. The DC-DC converters feature 100W output power with no requirement for minimum load, wide input voltage from 43-160VDC, and allowing operating temperature as high as 105°C. The products also provide input under-voltage protection, output over-voltage, short-circuit and over-temperature protection. Additional functions include remote On/Off control, remote sense compensation and output voltage trim adjustment. EN50155 approved and they are widely used in railway systems and associated equipment.

Common specifications	
Short circuit protection:	Hiccup, continuous, self-recovery
Operation temperature range:	-40°C ~ +105°C
Storage humidity range:	Non-condensing 5 ~ < 95%RH
Storage temperature range:	-55°C ~ +125°C
Lead temperature:	300°C MAX, 1.5mm from case for 10 sec
Cooling test:	EN60068-2-1
Dry heat:	EN60068-2-2
Damp heat:	EN60068-2-30
Shock and vibration test:	IEC/EN61373 - Category 1, Grade B
Switching frequency:	PFM mode 220KHz TYP
MTBF (MIL-HDBK-217F @ 25°C):	500 Khours MIN
Casing material:	Aluminum alloy case; Black plastic bottom, flame-retardant and heat-resistant (UL94 V-0)
Cooling:	Free air convection or forced convection
Dimensions	60.80 × 39.20 × 12.70mm (without heatsink) 61.50 × 39.20 × 27.80mm (with heatsink)
Weight:	78.0g TYP. (without heatsink) 109.0g TYP. (with heatsink)

Input specification	s				
Item	Test condition	Min	Тур	Max	Units
Input current (No load/full load)	Nominal input • 3.3VDC output • 24VDC output • 12/15VDC output • 05/48VDC output		793/10 1000/10 1022/10 1034/10	812/20 1022/20 1045/20 1058/20	mA mA mA
Reflected ripple current	Nominal input		100		mA
Surge voltage	(1sec max)	-0.7		180	VDC
Start-up Voltage				43	VDC
Under-voltage Protection			40		VDC
Input Filter	Unavailable				
Ctrl*	Module onModule offInput current	(3.5-1	oin open or 2VDC) oin -Vin or p		
	when off		2	10	mA

^{*}The Ctrl pin voltage is referenced to input -Vin.

Example

100QBRW4_110S3

100 = 100 Watt; QBR = Quarter Brick; W4 = Wide input range (4:1); 110 = Nominal Output Voltage; S = Single Output; 3 = 3000 VDC isolation

Output specifications	5				
Item	Test condition	Min	Тур	Max	Units
Voltage accuracy	Nominal input, 10%-100% load		±1	±3	%
Line regulation	Input voltage variation low to high at full load • 3.3VDC, 5VDC output • Others		±0.1	±0.5 ±0.3	% %
Load regulation	Nominal input, 10%-100% load • 3.3VDC, 5VDC output • Others		±0.5 ±0.3	±1.0 ±0.5	% %
Transient Recovery Time	25% load step change		200	500	μς
Transient Response Deviation	25% load step change • 3.3VDC, 5VDC output • Others		±6 ±3	±9 ±5	% %
Temperature drift	full load			±0.03	%/°C
Ripple & Noise*	20MHz bandwidth, 10%Io-100%Io load • 3.3VDC, 5VDC output • Others		200 100	300 200	mVp-p mVp-p
Trim		90		110	%
		90		110	%
Output voltage remote Compensation (Sense)		90		105	%
remote Compensation	Surface max. temperature	90	105		
remote Compensation (Sense) Over-temperature		110 110	105	105	%
remote Compensation (Sense) Over-temperature Protection Output Over-voltage	temperature Input voltage range • 3.3VDC, 5VDC output	110	105	105 115 160	% % %Vo

^{*} Ripple & Noise for 48VDC output at 0%lo-100%lo load $\le 400mV$, others outputs at 0%lo-100%lo load $\le 300mV$, the measuring method of ripple and noise, please refer to Fig. 1.

Isolation specif	ications				
Item	Test condition	Min	Тур	Max	Units
Insulation voltage	Electric Strength test for 1min leakage current 5mA max. Input-output Input-case leakage current 1mA max. Output-case	3000 2100 1500			VDC VDC
Insulation resistance	Test at 500VDC	1000			ΜΩ
Isolation Capacitance	Input/output, 100KHz/0.1V		2200		pF

100QBRW4 3 series

100W - Single Output DC-DC Converter - Wide Input - Isolated & Regulated

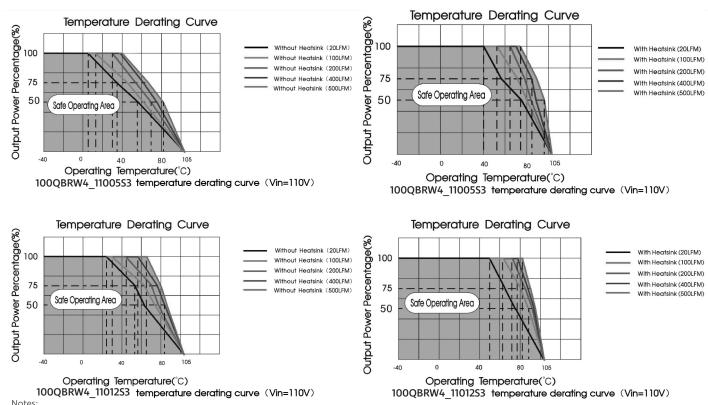
EMC specific	cations	
Emissions	CE	CISPR32/EN55032 150KHz-30MHz Class B (see Fig. 3)
Emissions	RE	CISPR32/EN55032 30MHz-1GHz Class B (see Fig. 3)
Immunity	ESD	IEC/EN61000-4-2 GB/T17626.2 Contact ±6KV, Air ±8KV perf.Criteria A
Immunity	RS	IEC/EN61000-4-3 GB/T17626.3 20V/m perf.Criteria A
Immunity	CS	IEC/EN61000-4-6 GB/T17626.6 10Vr.m.s perf.Criteria A
Immunity	EFT	IEC/EN61000-4-4 GB/T17626.4 \pm 2KV (5KHz, 100KHz) (see Fig. 3) perf.Criteria A
Immunity	Surge	IEC/EN61000-4-5 GB/T17626.5 line to line ±2KV (1.2 μ s/50 μ s 2 Ω) (see Fig. 3) perf.Criteria A

EMC specifications (EN50155)			
Emissions	CE	EN50121-3-2 150kHz-500kHz 99dBuV (see Fig. 2) EN55016-2-1 500kHz-30MHz 93dBuV (see Fig. 2)	
Emissions	RE	EN50121-3-2 30MHz-230MHz 40dBuV/m at 10m (see Fig. 2) EN55016-2-1 230MHz-1GHz 47dBuV/m at 10m (see Fig. 2)	
Immunity	ESD	EN50121-3-2 Contact ±6KV/Air ±8KV perf. Criteria A	
Immunity	RS	EN50121-3-2 20V/m perf. Criteria A	
Immunity	EFT	EN50121-3-2 ±2kV 5/50ns 5kHz (see Fig. 2) perf. Criteria A	
Immunity	Surge	EN50121-3-2 line to line ±1KV (42 Ω , 0.5 μ F) (see Fig. 2) perf. Criteria A	
Immunity	CS	EN50121-3-2 0.15MHz-80MHz 10V r.m.s perf. Criteria A	

Note:

- Recommended used in more than 5% load, if the load is lower than 5%, then the ripple index of the product may exceed the specification, but does not affect the reliability of the product;
- 2. The max capacitive load should be tested within the input voltage range and under full load conditions;
- Recommends that customers plus silicone film or thermal grease between the module and the heatsink, In order to ensure good heat dissipation;
 4. Unless otherwise specified, data in this datasheet should be tested under the
- conditions of Ta = 25°C, humidity < 75% when inputting nominal voltage and outputting rated load;
- All index testing methods in this datasheet are based on our company's corporate standards;
- 6. The performance indexes of the product models listed in this datasheet are as above, but some indexes of non-standard model products will exceed the abovementioned requirements, and please directly contact our technicians for specific information;
- We can provide product customization service;
- Specifications of this product are subject to changes without prior notice.
- 9. The products do not support parallel connection of their output

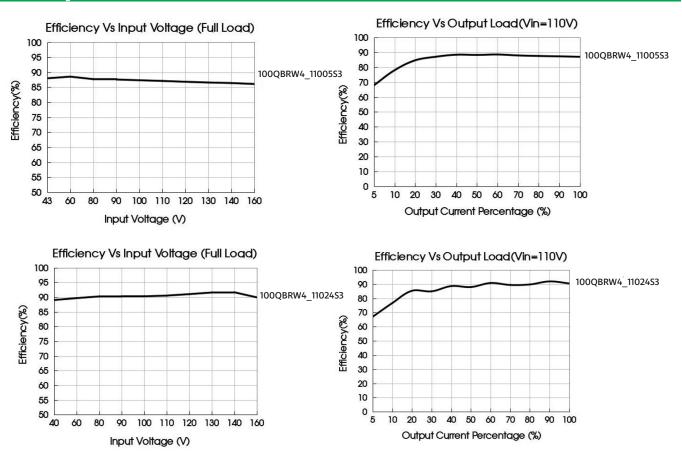
Product Selection Guide


Part Number	Input Voltage Nominal (range)	e [VDC] Max.*	Output Voltage [VDC]	Output Current [mA, max/min]	Efficiency [%, typ]	Capacitive load [μF, max]
100QBRW4_11003S3	110 (43-160)	170	3.3	22727/0	84/86	40000
100QBRW4_11005S3	110 (43-160)	170	5	20000/0	86/88	20000
100QBRW4_11012S3	110 (43-160)	170	12	8333/0	87/89	6000
100QBRW4_11015S3	110 (43-160)	170	15	6667/0	87/89	4700
100QBRW4_11024S3	110 (43-160)	170	24	4167/0	89/91	3000
100QBRW4_11048S3	110 (43-160)	170	48	2083/0	86/88	480

① We recommend to choose modules with a heat sink for enhanced heat dissipation and applications with extreme temperature requirements;

② When input voltage at 43-66VDC, the output power and max. capacitive load need to be derated to 80%;

[®] Exceeding the maximum input voltage may cause permanent damage.


Typical Characteristic Curves

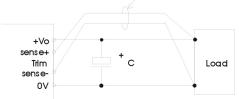
1. Temperature derating curves and efficiency curves are typical test values.

2. Temperature derating curve in accordance with our laboratory test conditions for testing, the actual use of environmental conditions if the customer is not consistent, to ensure that the product aluminum shell temperature does not exceed 100°C, can be used within any rated load range.

Efficiency curves

Sense of application and precautions

1. When Remote Sense is not used

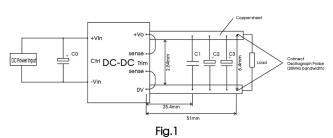


Notes:

- (1) If the sense function is not used for remote regulation the user must connect the +Sense to + Vo and -Sense to 0V at the DC-DC converter pins and will compensate for voltage drop across pins only.
- (2) The connections between Sense lines and their respective power lines must be kept as short as possible, otherwise they may be picking up noise, interference and/or causing unstable operation of the power module.

2. When Remote Sense is not used

Suggest to use twisted pair


Notes:

- (1) Using remote sense with long wires may cause unstable output, please contact technical support if long wires must be used.
- (2) PCB-tracks or cables/wires for Remote Sense must be kept as short as possible. Twisted pair or shielded wairs are suggested for remote compensation and must be kept as short as possible.
- (3) We recommend using adequate cross section for PCB-track layout and/or cables to connect the power supply module to the load in order to keep the voltage drop below 0.3V and to make sure the power supply's output voltage remains within the specified range.
- (4) Note that large wire impedance may cause oscillation of the output voltage and/or increased ripple.

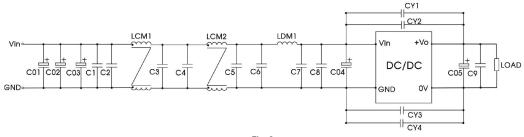
Design reference

1. Ripple & noise

All the DC-DC converters of this series are tested before delivery using the recommended circuit shown in Fig. 1.

Vout	C0(μF)	C1(µF)	C2(µF)	C3(μF)
3.3VDC				1000
5VDC				680
12VDC	100	1	10	
15VDC	100	1	10	220
24VDC				
48VDC				

2. Typical application


We recommended using EMC circuit, otherwise please ensure that at least a $100\mu F$ electrolytic capacitors is connected at the input in order to ensure adequate voltage surge suppression and protection.

Input and/or output ripple can be further reduced by appropriately increasing the input & output capacitor values Cin and Cout and/or by selecting capacitors with a low ESR (equivalent series resistance). Also make sure that the capacitance is not exceeding the specified max. capacitive load value of the product.

Vout	Cout(µF)	Cin(μF)
3.3VDC	1000	
5VDC	680	
12VDC		100
15VDC	220	100
24VDC	220	
48VDC		

EMC compliance recommended

Fig.2

C01, C02, C03, C04	220uF/200V (electrolytic capacitor)
C05	220uF/63V (electrolytic capacitor)
LDM1	1.5uH (Shielded inductor)
C1, C2, C3, C4, C5, C6, C7, C8, C9	2.2uF/250V
CY1, CY2, CY3, CY4	2200 pF /400VAC (Y safety capacitor)
LCM1	FL2D-30-472
LCM2	FL2D-30-102

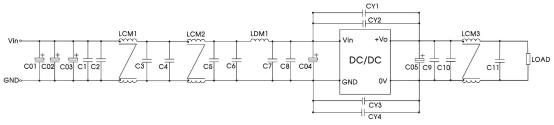
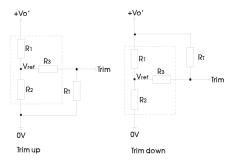



Fig.3

C01, C02, C03, C04	220uF/200V (electrolytic capacitor)
C05	220uF/63V (electrolytic capacitor)
LDM1	1.5uH (Shielded inductor)
C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11	2.2uF/250V
CY1, CY2, CY3, CY4	2200 pF /400VAC (Y safety capacitor)
LCM1	FL2D-30-472
LCM2	FL2D-30-102
LCM3	FL2D-70-360C (7A max.) FL2D-A3-360C (13A max.) FL2D-B5-360C (25A max.)

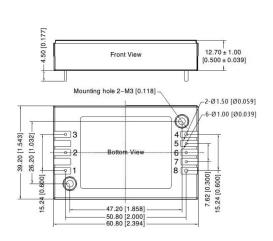
Trim Function for Output Voltage Adjustment (open if unused)

TRIM resistor connection (dashed line shows internal resistor network)

Trim resistor calculation:

up:
$$R_T = \frac{\alpha R_2}{R_2 - \alpha} - R_3$$
 $\alpha = \frac{Vref}{Vo' - Vref} R_1$

down:
$$R_{T} = \frac{\alpha R_{1}}{R_{1} - \alpha}$$
 $-R_{3}$ $\alpha = \frac{Vo' - Vref}{Vref}$ R_{2}

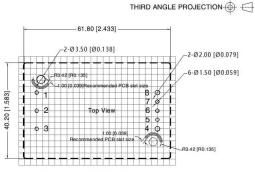

100QBRW4 3 series

100W - Single Output DC-DC Converter - Wide Input - Isolated & Regulated

resistance	Vo						
	3.3(VDC)	5(VDC)	12(VDC)	15(VDC)	24(VDC)	48(VDC)	
R1(KΩ)	4.83	8.80	11	14.49	24.87	58.7	
R2(KΩ)	2.87	2.87	2.87	2.87	2.87	3.21	
R3(KΩ)	9.66	11	11	16	21	11	
Vref(V)	1.24	1.24	2.5	2.5	2.5	2.5	

For R1, R2, R3 and Vref values refer to table 1. RT = Trim Resistor value; a = self-defined parameter Vo'= desired output voltage

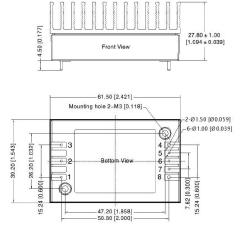
Mechanical dimensions and recommended layout (without heatsink)



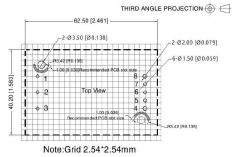
Note:

Unit:mm[inch]

Pin1,2,3,5,6,7's diameter: 1.00[0.039] Pin4,8's diameter: 1.50[0.059] Pin diameter tolerances : ±0.10[±0.004]


General tolerances: ±0.50[±0.020] Mounting hole screwing torque: Max 0.4 N·m

Note:Grid 2.54*2.54mm


	Pin-Out						
Pin	Function	Pin	Function				
1	+Vin	5	Sense-				
2	Ctrl	6	Trim				
3	–Vin	7	Sense+				
4	4 0V		+Vo				

Mechanical dimensions and recommended layout (with heatsink)

Note: Unit:mm[inch] Pin1.2.3.5.6.7's diameter: 1.00[0.039]

Pin4,8's diameter: 1.50[0.059] Pin diameter tolerances: ±0.10[±0.004] General tolerances : ±0.50[±0.020] Mounting hole screwing torque : Max 0.4 N·m

Pin-Out						
Pin	Function	Pin	Function			
1	+Vin	5	Sense-			
2	Ctrl	6	Trim			
3	-Vin	7	Sense+			
4	OV	8	+Vo			