

15W - AC-DC converter

AC-DC Converter

15 Watt

- Wide input voltage range:
- 176-528VAC/248-745VDC
- Transfer efficiency (typ. 82%)
 Switching frequency: 65kHz
 Protection: short circuit,

- over current

- 🕀 Isolation voltage: 3600VAC Meets IEC62368/UL62368/ **A**
- EN62368 test standards
- PCB Mounting
- ∓ Ultra compact open frame, industrial design

Our versatile 15ACFE1W 3.6 series features a wide input voltage range of 176-528VAC/248-745VDC, making it adaptable to various applications. It offers low no-load power consumption ≤0.30W and a typical transfer efficiency of 82%. Operating at a switching frequency of 65kHz, it includes robust protection against short circuits and over current. With an isolation voltage of 3600VAC, it ensures safety and reliability. Additionally, it meets the IEC62368/UL62368/EN62368 test standards, supports PCB mounting, and boasts an ultra-compact open frame industrial desian.

Common specifications

Short circuit protection	Full input voltage range - Continuous, Self-recovery Hiccup
Over current protection	Input 220VAC - ≥110% Io, Self-recovery - Hiccup
Switching frequency	65 kHz (typ.)
Operating temperature	-40°C - +85°C (with derating)
Storage temperature	-40°C - +105°C
Soldering temperature	Wave soldering: 260°C (±4°C), time 5-10S Manual soldering: 360°C (±8°C), time 4-7S
Relative humidity	10~90% RH
Hot plug	Unavailable
Remote control terminal	Unavailable
Safety standard	EN62368, IEC62368, UL62368
Vibration	10-55Hz, 10G, 30Min, along X, Y, Z
Safety class	CLASS II
MTBF (MIL-HDBK-217F@25°C)	>300,000 Hours

Input specifications

input specifications					
Item	Operating condition	Min	Тур	Max	Units
Input voltage range	AC input DC input	176 248	220 310	528 745	VAC VDC
Input frequency range		47	50	63	Hz
Input current	176VAC 220VAC			0.25 0.20	А
Surge current	176VAC 220VAC			10 20	А
External fuse	2A/500VAC slow fusing				
Leakage current	0.25mA typ./230VAC/50Hz				

Example:

- 15ACFE1W 05S3.6 15 = 15Watt; AC = AC-DC; F = Open Frame; E1 = Cost effective;
- W = Wide input; 05 = 5Vout; S = Single output; 3.6 = 3.6 kVAC isolation

Output specifications					
ltem	Operating condition	Min	Тур	Max	Units
Voltage accuracy	Full input voltage range, Any load - Vo		±2.0	±3.0	%
Line Regulation	Nominal Load - Vo			±0.5	%
Load regulation	Nominal input Voltage, 20%~100% load - Vo			±1.0	%
No load power consumption	Input 176VAC Input 220VAC			0.25	W
Minimum load	Single Output	0			%
Turn-on delay time	Nominal input voltage (full load)		1000		mS
Power-off holding time	Input 176VAC (full load) Input 220VAC (full load)		50 80		mS
Dynamic response	Overshoot range 25%~50%~25% Recovery time 50%~75%~50%	-5.0	5.0	+5.0	% mS
Output overshoot	Full input voltage range		≤10%Vo		%
Drift coefficient		-	±0.03%	-	%/°C

Isolation specifications							
Item	Operating Conditions	Min	Тур	Max	Units		
Isolation voltage	Input-Output,Test 1min, leakage current ≤5mA	3600			VAC		
Insulation resistance	Input-Output @ DC500V	100			MΩ		

- 1. The product should be used under the specification range, otherwise it will cause permanent damage to it.
- 2. Product's input terminal should connect to fuse;
- 3. If the product is not worked under the load range (below the minimum load or beyond the load range), we cannot ensure that the performance of product is in accordance with all the indexes in this manual;
- 4. Unless otherwise specified, data in this datasheet are tested under conditions of Ta = 25°C, humidity <75% when inputting nominal voltage and outputting rated load (pure resistance load);
- 5. All index testing methods in this datasheet are based on our company's corporate standards
- The performance indexes of the product models listed in this manual are as above, 6. but some indexes of non-standard model products will exceed the above-mentioned requirements, please directly contact our technician for specific information;
- 7. We can provide customized product service;
- 8. The product specification may be changed at any time without prior notice.

15W - AC-DC converter

EMC s	EMC specifications					
EMC	EMI	CE	CISPR22/EN55032	CLASS B (see recommended circu	it Photo 2)	
EMC	EMI	RE	CISPR22/EN55032	CLASS B (see recommended circuit Photo 2)		
EMC	EMS	RS	IEC/EN61000-4-3	10V/m	Perf.Criteria A (see recommended circuit Photo1)	
EMC	EMS	CS	IEC/EN61000-4-6	10Vr.m.s	Perf.Criteria A (see recommended circuit Photo1)	
EMC	EMS	ESD	IEC/EN61000-4-2	Contact ±6KV/ Air ±8KV	Perf.Criteria B	
EMC	EMS	Surge	IEC/EN61000-4-5	±2KV	Perf.Criteria B (see recommended circuit Photo 2)	
EMC	EMS	EFT	IEC/EN61000-4-4	±2KV ±4KV	Perf.Criteria B Perf.Criteria B (see recommended circuit Photo 2)	
EMC	EMS	Voltage dips and interruptions	IEC/EN61000-4-11	0%-70%	Perf.Criteria B	

Product Selection Guide

Approval	Model	Output Power (W)	Output Voltage Vo1(V)	Output Current Io1(mA)	Max. Capacitive Load (uF)	Ripple & Noise 20MHz (Max) mVp-p	Efficiency Full Load, 220VAC Typ. (%)
	15ACFE1W_05S3.6	15	5	3000	3000	120	77
	15ACFE1W_12S3.6	15	12	1250	2000	120	82
	15ACFE1W_24S3.6	15	24	625	800	150	84

Note:

The typical output efficiency is based on that product is full loaded and burned-in after half an hour.
 The fluctuation range of the full-load efficiency (%, typ) in the table is ±2%. The full-load efficiency is the total output power divided by the input power of the module.
 The test method for ripple & noise adopts the twisted pair test method. Please see the following (ripple & noise test instructions) for details.

Product characteristic curve

Note

1. Input Voltage should be derated base on Input Voltage Derating Curve when it is 480~528VAC /678~745VDC.

2. Our product is suitable to use under natural air cooling environment, if use it under closed condition, please contact with us.

15W - AC-DC converter

Packing Dimension

Note: unit: mm General tolerance:±1.00 Layout of the device is for reference only, please refer to actual product

Pin	1	2	3	4	5	6
Single	AC(L)	AC(N)	+Vc	-Vc	-Vo	+Vo

Ripple & noise test: (twisted pair method 20MHz bandwidth)

Twisted pair method (20MHz bandwidth)

Test Method:

1. Connect the twisted pair, set the oscilloscope bandwidth to 20MHz, use a 100M bandwidth probe, and terminate with a 0.1uF polypropylene capacitor and a 10uF high-frequency low-resistance electrolytic capacitor in parallel. Configure the oscilloscope to sample mode.

2. Connect the input terminal to the power supply and the output terminal to the electronic load using a jig plate. Use a 30 cm ($\pm 2 \text{ cm}$) sampling line, and select the power line from appropriately insulated wires of the corresponding diameter according to the output current flow.

15W - AC-DC converter

Typical application circuit

Photo 1

Products Number	CE1, CE2 (necessary)	CE3 solid-state capacitor (necessary)	L1 (necessary)	CE4 (necessary)	FUSE (necessary)	MOV1	R2,R3, R4,R5 chip resistor (necessary)	CY 1	G	TVS
15ACFE1W_05S3.6	47uF/400 V	1000uF/16V	2.0uH/6.5A	330uF/16V	2A/500V	14D911K	1206/1M	1nF/400V	0.1uF/50V	SMBJ7.0A
15ACFE1W_12S3.6	47uF/400 V	470uF/16V	2.0uH/6.5A	330uF/16V	2A/500V	14D911K	1206/1M	1nF/400V	0.1uF/50V	SMBJ20A
15ACFE1W_24S3.6	47uF/400 V	470uF/35V	2.0uH/6.5A	100uF/35V	2A/500V	14D911K	1206/1M	1nF/400V	0.1uF/50V	SMBJ30A

Note:

CE1, CE2: When AC input, CE1, CE2 are the input filter electrolytic capacitors (must be connected externally); when DC input, CE1, CE2 are large filter capacitor in the EMC filter (must be connected externally); it is recommended to use ripple current >200mA@100KHz, electrolytic capacitor with ESR ≤100Ω at low temperature.
 R2, R3, R4 and R5 are the voltage equalizing resistors of the electrolytic capacitors CE1 and CE2 (must be connected externally)
 R1 is a wire-wound resistor, the recommended model is 3W/6.8Ω.

EMC recommended circuit (basic application)

Application environment	Ambient temperature range	EMS Class	EMI Class
Basic application	-40°C-85°C	Class 3	Class A

Photo 2-1

Components	Recommended Value
R1 (wire-wound resistor, required)	6.8Ω/3W
R6 (Chip resistor)	1206/4.7K
L2	2.2mH/Max:4.81Ω/Min:0.31A
FUSE (necessary)	2A/500V, slow fusing

Note: R1 is a plug-in resistor at the input end. This resistor needs to be a wire-wound resistor. Do not choose a chip resistor or a carbon film resistor.

15W - AC-DC converter

Recommended circuits for general systems in general indoor environments

Note:

1. In the home appliance application environment, the two Y capacitors on the primary and secondary sides need to be connected externally at the same time (CY1, CY2, specification value is 2.2nF/400VAC), which can meet 60335 certification;

2. According to certification requirements, the X capacitor needs to be connected in parallel with a bleeder resistor. The recommended value is <3.8MQ. The actual selection needs to be based on certification standards;

3. R1 is a plug-in resistor at the input end. This resistor needs to be a wire-wound resistor. Do not choose a chip resistor or a carbon film resistor.

Recommended circuits for general systems in indoor industrial environments

Photo 2-3

Components	Recommended Value
MOV1	14D911K
R1 (wire-wound resistor, required)	6.8Ω/3W
R6(Chip resistor)	1206/4.7K
L2	2.2mH/Max:4.81Ω/Min:0.31A
LF1	10mH/1A
CX	0.1uF/480VAC
FUSE(necessary)	2A/500V, slow fusing

Note:

1. According to certification requirements, the X capacitor needs to be connected in parallel with a bleeder resistor. The recommended value is <3.8MΩ. The actual selection needs to be based on certification standards;

2. R1 is a plug-in resistor at the input end. This resistor needs to be a wire-wound resistor. Do not choose a chip resistor or a carbon film resistor.

15W - AC-DC converter

Recommended circuit for general system in outdoor general environment

Note:R1 is a plug-in resistor at the input end. This resistor needs to be a wire-wound resistor. Do not choose a chip resistor or a carbon film resistor.

Recommended circuits for general systems in outdoor industrial environments

Note:

1. According to certification requirements, the X capacitor needs to be connected in parallel with a bleeder resistor. The recommended value is <3.8MΩ. The actual selection needs to be based on certification standards;

2. R1 is a plug-in resistor at the input end. This resistor needs to be a wire-wound resistor. Do not choose a chip resistor or a carbon film resistor.

15W - AC-DC converter

Recommended circuit for general system in strong lightning surge environment

Photo 3-1:Recommended peripheral circuit diagram for high requirements of 4KV differential mode surge - full wave rectification

Photo 3-2:Recommended peripheral circuit diagram for high requirements of 4KV differential mode surge - half-wave rectification

Components	Recommended Value
FUSE1, FUSE2, FUSE3(necessary)	6.3A/500V, slow fusing
MOV1,MOV2,MOV3	14D911K
R1,R7,R8 (wire-wound resistor, required)	12Ω/5W
D	2A/1000V
L2	2.2mH/Max:4.81Ω/Min:0.31A

Note: R1, R7, and R8 are plug-in resistors at the input end. This resistor needs to be a wire-wound resistor. Do not choose a chip resistor or a carbon film resistor.