
### 15DMOW4\_S 1.5 series

15W - Single Output - Wide Input - Isolated & Regulated 1" x 1" DC-DC Converter



### **DC-DC Converter**

15 Watt



High efficiency up to 88%

Short circuit protection (SCP)

Fisolation voltage: 1.5kVDC

Over-current, over-voltage protection

Under-voltage lockout

RoHS compliant





- Operating temperature range: -40°C to +85°C
- Fixed switching frequency
- Remote on/off logic
- ← International standard pin-out
- Monotonic startup into normal and pre-bias loads
- Adjustable output voltage range
- # Meets IEC60950-1

The 15DMOW4 S1.5 series are isolated 15W DC/DC converters with 4:1 input voltage. They feature efficiency up to 88%, 1500VDC isolation, operating temperature of -40°C to +85°C, input under-voltage protection, output over-voltage, output over-current, output short circuit protection and meets IEC60950-1.

They are widely applied in distributed power architectures, wireless networks, access and optical network equipment, enterprise networks, latest generation IC's (DSP, FPGA, ASIC) and microprocessor powered applications.

| Common specifications         |                                                                                                                |
|-------------------------------|----------------------------------------------------------------------------------------------------------------|
| Short circuit protection:     | Hiccup, continuous, self-recovery                                                                              |
| Cooling:                      | Free air convection                                                                                            |
| Operation temperature range:  | -40°C~+85°C                                                                                                    |
| Storage temperature range:    | -40°C~+125°C                                                                                                   |
| Storage humidity range:       | 90% MAX                                                                                                        |
| Thermal stability time:       | 30mins                                                                                                         |
| FIT:                          | 167 10 <sup>9</sup> /hours                                                                                     |
| Vibration:                    | IEC60068-2-6: 10~500Hz sweep, 0.75mm excursion, 10g acceleration, 10minutes in each 3 perpendicular directions |
| Shock:                        | IEC 60068-2-27:200g acceleration, duration 3 ms,6 drops in each 3 perpendicular directions                     |
| Safety:                       | Compliant to IEC60950-1, UL60950-<br>1,EN60950-1 and GB4943                                                    |
| Switching frequency:          | 300KHz MIN,<br>3.3V: 350KHz MAX, 12V: 500KHz MAX                                                               |
| Transportation:               | ETS300019-1-2                                                                                                  |
| MTBF (Telcordia SR332, 40°C): | 6,000,000 hours                                                                                                |
| Weight:                       | 9g                                                                                                             |

| Protection specifications                 |                                       |               |               |                 |                   |  |
|-------------------------------------------|---------------------------------------|---------------|---------------|-----------------|-------------------|--|
| Item                                      | Test condition Min Typ M              |               | Max           | Units           |                   |  |
| Input under voltage<br>lockout            | • Turn-off 15 1                       |               | 17<br>16<br>1 | 18<br>17<br>1.5 | VDC<br>VDC<br>VDC |  |
| Over current protection                   | Hiccup mode, auto-<br>matic recovery  |               | yes           |                 | А                 |  |
| Over voltage protection                   | Clamp voltage mode<br>• 3.3V<br>• 12V | 3.79<br>13.44 |               | 5<br>18         | VDC<br>VDC        |  |
| Over temperature protection               | Automatic recovery<br>See OTP section |               | 125           |                 | °C                |  |
| Over Temperature<br>Protection Hysteresis |                                       |               | 10            |                 | °C                |  |

15DMOW4\_2415S1.5

15 = 15Watt; D = DIP; M = Miniature; O = Open frame; W4 = wide input (4:1); 18-36Vin; 15Vout; S = single output; 1.5 = 1500VDC

| Output specification                              | ons                                                                                               |               |             |               |             |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------|-------------|---------------|-------------|
| Item                                              | Test condition                                                                                    | Min           | Тур         | Max           | Units       |
| Voltage set point<br>25°C, Io=Io (max)            | • 3.3V<br>• 12V                                                                                   | 3.25<br>11.82 | 3.3<br>12   | 3.35<br>12.18 | V<br>V      |
| Voltage regulation                                | Vin= Vin (min) to<br>Vin(max)                                                                     |               | 0.05        | 0.2           | %Vo         |
| Load regulation                                   | lo=0 to lo (max)<br>• 3.3V<br>• 12V                                                               |               | 0.1<br>0.05 | 0.3<br>0.2    | %Vo<br>%Vo  |
| DC Current-Limit<br>Inception                     | 3V                                                                                                | 110           |             | 180           | %lo         |
| Current Limit                                     | 12V                                                                                               | 1.43          |             | 2.34          | А           |
| Voltage precision<br>(full temperature<br>range)  | Vin=Vin (min) to<br>Vin(max), Io=0 to<br>Io(max)                                                  |               |             | 3.0           | %Vo         |
| Voltage adjust-<br>ment range                     | Rated power<br>Io=0 to Io (max)<br>• 3.3V<br>• 12V                                                | 3.3<br>-10    | ±0.008      | 3.63<br>10    | V<br>%Vo    |
| Temperature drift                                 | Full temp. range                                                                                  |               | ±0.008      | ±0.02         | %/°C        |
| Dynamic response recovery time                    | 25%-50%-25%,50%-75%-<br>50% lo(nom)                                                               |               | 100         | 200           | μS          |
| Dynamic response overshoot                        | di/dt=0.1A/µS, 10µF<br>Tantalum capacitor,<br>1µF ceramic capacitor<br>• 3.3V<br>• 12V            |               | 3           | 8             | %Vo<br>%Vo  |
| Ripple and noise*                                 | <u>P-P</u><br>• 3.3V<br>• 12V                                                                     |               | 40<br>50    | 80<br>100     | mV<br>mVp-p |
|                                                   | <u>RMS</u><br>• 3.3V<br>• 12V                                                                     |               | 10<br>15    | 20<br>50      | mV<br>mVRMS |
| Turn-on delay<br>time                             | Time from instant at<br>which Vin=Vin (Turn-on)<br>until Vo=10% of Vo<br>(nom)<br>• 3.3V<br>• 12V |               | 10          | 10<br>25      | ms<br>ms    |
| Turn-on rise time                                 | Time for Vo to rise<br>from 10% of Vo (nom)<br>to 90% of Vo (nom)<br>• 3.3V<br>• 12V              |               | 30          | 10<br>50      | ms<br>ms    |
| Turn-on transient:<br>output voltage<br>overshoot | Vin=Vin(min) to Vin<br>(max), lo=0 to lo (max),<br>full temp. range<br>• 3.3V<br>• 12V            |               |             | 5 3           | %Vo<br>%Vo  |

<sup>\*</sup> Measured with 10uF Tantalum capacitor and 1uF ceramic capacitor across output. Page 1 of 6

### 15DMOW4 S1.5 series

15W - Single Output - Wide Input - Isolated & Regulated 1"  $\times$  1" DC-DC Converter

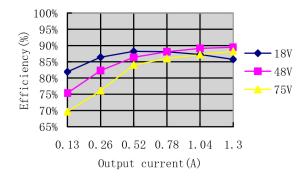
| Input specifications           |                                                                       |     |          |             |                                      |
|--------------------------------|-----------------------------------------------------------------------|-----|----------|-------------|--------------------------------------|
| Item                           | Test condition                                                        | Min | Тур      | Max         | Units                                |
| Operating input voltage        | Io=0 to Io(max)                                                       | 18  | 48       | 75          | VDC                                  |
| Max. input current             | 100% load Vin= Vin<br>(min) to Vin (max)<br>• 3.3V<br>• 12V           |     |          | 1.3<br>1.1  | A<br>A                               |
| Input current                  | no load, full input<br>• 3.3V<br>• 12V                                |     | 30<br>15 | 60<br>50    | mA<br>mA                             |
| Stand-by input current         | REM disabled                                                          |     | 3        | 6           | mA                                   |
| Reflected ripple current       | peak-to-peak, 5Hz<br>to 20 MHz,12µH<br>source inductance              |     | 8        | 30          | mA                                   |
| Inrush transient               | Vin=Vin (min) to<br>Vin (max), Io=0 to<br>Io (max)<br>• 3.3V<br>• 12V |     |          | 0.1<br>0.01 | A <sup>2</sup> S<br>A <sup>2</sup> S |
| Starting voltage*              | • 24VDC input<br>• 48VDC input                                        |     |          | 9<br>18     | VDC<br>VDC                           |
| Input voltage ripple rejection | 120Hz                                                                 |     | 60       |             | dB                                   |
| Input fuse                     |                                                                       |     |          | 3           | А                                    |

| Isolation specifications |                |     |      |      |       |  |
|--------------------------|----------------|-----|------|------|-------|--|
| Item                     | Test condition | Min | Тур  | Max  | Units |  |
| Isolation voltage*       | Input/output   |     |      | 1500 | VDC   |  |
| Isolation resistance     | Test at 500VDC | 10  |      |      | ΜΩ    |  |
| Isolation capacitance**  |                |     | 1000 |      | pF    |  |

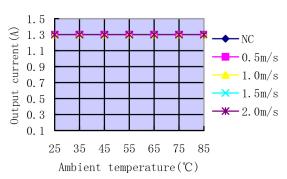
<sup>\*</sup> Test duration 1 minute, leak current lower than 10mA, no arcing or breakdown

<sup>\*\*</sup> The isolation resistance of input to output is more than  $10 M\Omega$ 

| Remote control specifications |                |      |     |     |       |  |  |
|-------------------------------|----------------|------|-----|-----|-------|--|--|
| Item                          | Test condition | Min  | Тур | Max | Units |  |  |
| Logic low voltage             |                | -0.7 |     | 0.8 | VDC   |  |  |
| Logic high voltage            |                | 2    |     | 18  | VDC   |  |  |


<sup>\*</sup> Converter guaranteed logic high when REM pin is left open

## **Product Selection Guide**

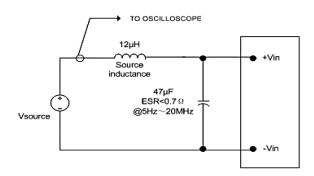

| Part Number      | Inpu    | t Voltage [VD0 | :]  | Output Voltage [VDC] | Output Current [mA] | Efficiency [%, Typ.] | Capacitive load [µF, Max.] |
|------------------|---------|----------------|-----|----------------------|---------------------|----------------------|----------------------------|
|                  | Nominal | Range          | Max |                      | Full load           |                      |                            |
| 15DMOW4_4803S1.5 | 48      | 18-75          | 80  | 3.3                  | 5000                | 88                   | 1000                       |
| 15DMOW4_4812S1.5 | 48      | 18-75          | 80  | 12                   | 1300                | 88.5                 | 470                        |

# Typical characteristics

#### Converter Efficiency Vs. Output Current

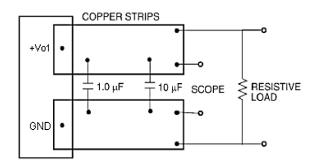


# Available load current vs. ambient temperature and airflow for the module mounted horizontally



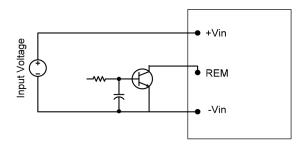

<sup>\*</sup> Nominal input voltage & constant resistance load

### 15DMOW4 S1.5 series


15W - Single Output - Wide Input - Isolated & Regulated 1"  $\times$  1" DC-DC Converter

#### Input Reflected Ripple Current Test Setup




Measure input reflected ripple current with a simulated source inductance of  $12\mu H$ . The measurement points for input reflected ripple current is showed above.

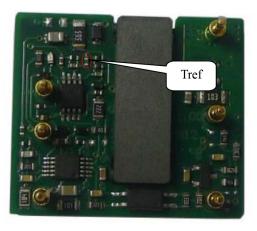
#### Output Ripple and Noise Test Setup



Scope measurements should be made using a BNC socket, with a  $1\mu F$  ceramic capacitor and a  $10 \mu F$  tantalum capacitor. Position the oscilloscope probe between 51mm and 76mm (2 inch and 3 inch) from the module.

### Remote on/off

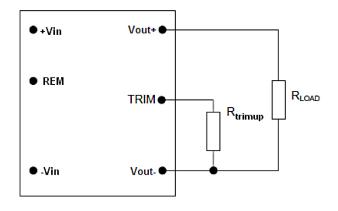


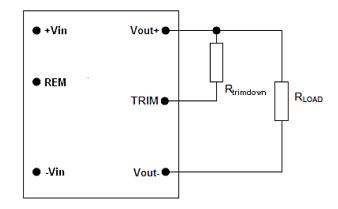

The REM pin is used to turn the power converter remote on or off via a system signal. This power module is negative logic version. When the REM pin is at logic high the power turns off and turns on at logic low.

To turn the power module on and off, the user must supply a switch to control the voltage between the REM pin and -Vin terminal (see Figure 3). A logic low is VREM = -0.7V to 0.8V. The maximum IREM during logic low is 1mA. The switch should maintain a logic low voltage while sinking 1mA. During logic high, the typical maximum VREM voltage is18V.

If not using the remote on/off feature, short REM pin to -Vin.

### Tref measurement location


3.3V




12V



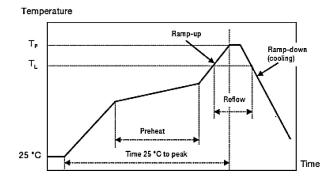
# Application of trim and calculation of trim resistance





3.3V

Rtrim\_up = 
$$\frac{2.5 \cdot 5110}{\text{Vo}_a \text{dj} - 3.3} - 2050$$

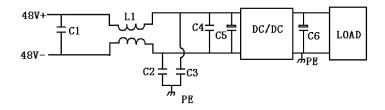

Output voltage trim allows the user to increase or decrease the output voltage set point of a module. This is accomplished by connecting an external resistor between the TRIM pin and either the Vout+ or Vout- pins. If not using the trim feature, leave the TRIM pin open.

12V

Rtrimup = 
$$\frac{2.5 \cdot 10000}{\text{Vo_adj} - 12} - 5110$$

Rtrimdown = 
$$\frac{(\text{Vo}\_\text{adj} - 2.5) \cdot 10000}{12 - \text{Vo}\_\text{adj}} - 5110$$

## Recommended reflow profile

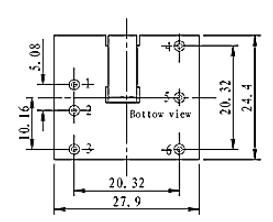


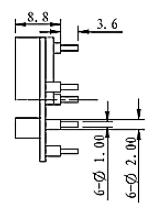

| Reflow process specific             | Pb-free              |               |  |
|-------------------------------------|----------------------|---------------|--|
| Average ramp-up rate                | Average ramp-up rate |               |  |
| Solder melting<br>temperature (lim) | TL                   | +217°C        |  |
| Time above T <sub>L</sub>           |                      | 30 s~90s      |  |
| Minimum pin<br>temperature          | T <sub>pin</sub>     | +235°C        |  |
| Peak product<br>temperature         | Тр                   | +245°C        |  |
| Average ramp-down<br>rate           |                      | 6°C/s max     |  |
| Time 25°C to peak                   |                      | 6 minutes max |  |

Peak product temperature 12V: +260°C

15W - Single Output - Wide Input - Isolated & Regulated 1" x 1" DC-DC Converter

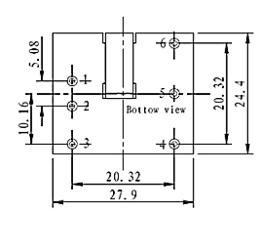
## Recommended EMC application

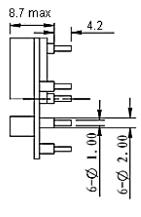




Suggested configuration to meet the conducted emission limits of EN55022 Class A.

| C         | Considerations                                      |
|-----------|-----------------------------------------------------|
| Component | Specifications                                      |
| C1        | SMD ceramic capacitor-1uF                           |
| C4        | SMD ceramic capacitor-0.1uF                         |
| L1        | Magnetic material-1320uH-+-25%                      |
| C2 C3     | Film through-hole mounted safety<br>capacitor-0.1uF |
| C5        | Electrolytic capacitor-100uF                        |
| C6        | Electrolytic capacitor-470uF                        |

# **Mechanical dimensions**

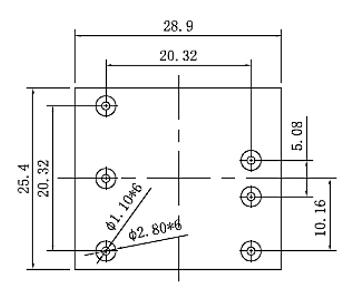

3.3V



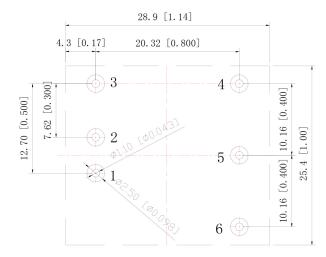



| Pin No. | Symbol | Function                |
|---------|--------|-------------------------|
| 1       | +Vin   | Positive input voltage  |
| 2       | -Vin   | Negative input voltage  |
| 3       | REM    | Remote control          |
| 4       | Vout+  | Positive output voltage |
| 5       | TRIM   | Output voltage trim     |
| 6       | Vout-  | Negative output voltage |

12V







| Pin No. | Symbol | Function                |
|---------|--------|-------------------------|
| 1       | +Vin   | Positive input voltage  |
| 2       | -Vin   | Negative input voltage  |
| 3       | REM    | Remote control          |
| 4       | Vout-  | Negative output voltage |
| 5       | TRIM   | Output voltage trim     |
| 6       | Vout+  | Positive output voltage |

### Recommended pad layout

3.3V



12V



#### Note:

- The maximum capacitive loads offered were tested at input voltage range and full load.
- Only typical model listed. Non-standard models will be different from the above, please contact us for more details.
- 3. All specifications are measured at TA = 25°C, humidity <75%, nominal input voltage and rated output load unless otherwise specified.
- 4. In this datasheet, all the test methods of indications are based on corporate standards.
- 5. We can provide product customization service, please contact our technicians directly for specific information.
- Our products shall be classified according to ISO14001 and related environmental laws and regulations, and shall be handled by qualified units.