

LMO78 1.0 series

Wide Input Non-Isolated & Regulated, Single Positive/Negative Output

Switching Regulator

- High efficiency up to 96%
- ← Operating temperature range: -40°C ~ +85°C
- Short circuit protection (SCP)
- Open frame SIP package
- No-load input current as low as 0.1mA
- Meets UL60950, EN60950 standards

The LMO78_1.0 series is a high efficiency switching regulator and ideal substitute for the LM78xx series three-terminal linear regulators. The product is featured with high efficiency, low loss, short circuit protection and no heat sink is required. They are widely used in industrial control, instrumentation, and electric power applications.

Common specifications	
Short circuit protection:	Continuous, automatic recovery
No-load input current:	0.1mA TYP, 1mA MAX
Reverse Polarity Input:	Forbidden
Input Filter:	Capacitor Filter
Cooling:	Free air convection
Operation temperature range:	-40°C~+85°C Power derating above 71°C
Storage temperature range:	-55°C ~+125°C
Pin welding resistance temperature:	260°C MAX, 1.5mm from case for 10 sec
Storage humidity range:	< 95%RH
Package material:	Plastic [UL94-V0]
MTBF:	>2,000,000 hours +25°C MIL-HDBK-217F
Weight:	2.1g

Note:

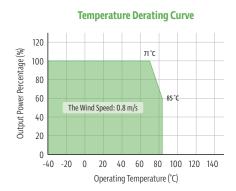
- The max. capacitive load should be tested within the input voltage range and under full load conditions;
- 2. Without any special statement, all indexes are only specific to positive output application;
- Unless otherwise specified, data in this datasheet should be tested under the conditions of Ta = 25°C, humidity <75% when inputting nominal voltage and outputting rated load;
- All index testing methods in this datasheet are based on our Company's corporate standards;
- 5. The performance indexes of the product models listed in this manual are as above, but some indexes of non-standard model products will exceed the above-mentioned requirements, and please directly contact with our technician for specific information;
- 6. Specifications subject to change without prior notice.

Output specifications					
Item	Test conditions	Min	Тур	Max	Units
Output voltage accuracy	100% load • LMO78_03-0.5 • Others		±2 ±2	±4 ±3	% %
Line regulation	Input Voltage Range		±0.2	±0.4	%
Load regulation	10% to 100% load		±0.4	±0.6	%
Ripple + Noise*	20MHz Bandwidth Vin=24VDC 0% -100% load		20	75	mVp- p
Switching frequency	Full load, nom. input • LMO78_03-1.0/ LMO78_05-1.0 • Others	420 580	520 680	620 780	KHz KHz
Transient response deviation	Nominal input, 25% load step change		50	300	mV
Transient recovery time	Nominal input, 25% load step change		0.1	1	ms
Temperature coefficient	-40 °C to +85 °C ambient			0.03	%/°C

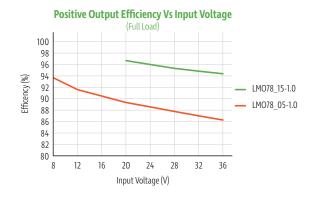
^{*} Test ripple and noise by "parallel cable" method. With the load lower than 20%, the maximum ripple and noise of 3.3V/5V output products will be 100mVp-p, 12V/15V output products will be 2%Vo.

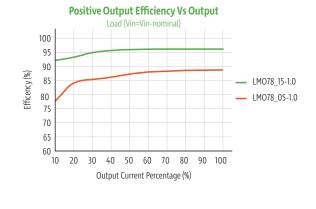
Example:

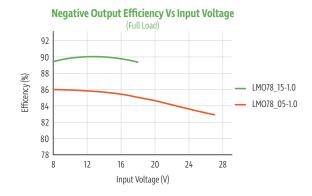
LMO78_05-1.0

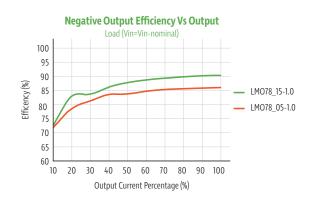

LM = Series; S = SIP Case; 05 = 5Vout; 1.0 = 1.0A

EMC s	pecifications			
EMI	CE	CISPR22/EN55022	CLASS B	(External circuit refer to EMC recommended circuit, 2) or EMC module application circuit)
EMI	RE	CISPR22/EN55022	CLASS B	(External circuit refer to EMC recommended circuit, 2) or EMC module application circuit)
EMS	ESD	IEC/EN61000-4-2	Contact ±4KV	perf. Criteria B
EMS	RS	IEC/EN61000-4-3	10V/m	perf. Criteria A
EMS	EFT	IEC/EN61000-4-4	±1KV	perf. Criteria B (External circuit refer to EMC recommended circuit,(1))
EMS	Surge	IEC/EN61000-4-5	line to line ±1KV	perf. Criteria B (External circuit refer to EMC recommended circuit(1))
EMS	CS	IEC/EN61000-4-6	3 Vr.m.s	perf. Criteria A

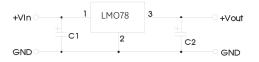

Product Selection Guide

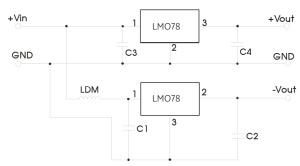

Part Number	Input Voltage [VDC]	Output Voltage	Output Current	Efficiency @full load	Max. capacitive load
	Nominal (Range)	[VDC]	[mA]	[% typ, min/typ Vin]	[μF]
LMO78_03-1.0	24 (6-36)	3.3	1000	90/81	680
LMO78_05-1.0	24 (8-36)	5	1000	93/86	680
	12 (8-27)	-5	-500	86/82	330
LMO78_12-1.0	24 (16-36)	12	1000	96/93	680
	12 (8-20)	-12	-300	89/88	330
LMO78_15-1.0	24 (20-36)	15	1000	96/94	680
	12 (8-18)	-15	-300	89/89	330


Typical characteristics



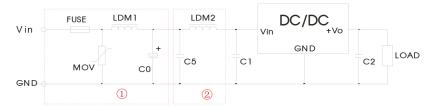
Efficiency




Typical application circuit

Positive output application circuit

Negative output application circuit

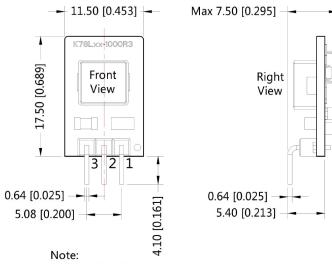

Positive and Negative output parallelling application circuit

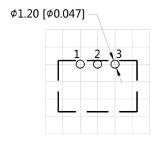
Part number	C1,C3 (Ceramic Capacitor)	C2,C4 (Ceramic Capacitor)
LMO78_03-1.0	10μF/50V	22μF/10V
LMO78_05-1.0	10μF/50V	22μF/10V
LMO78_12-1.0	10μF/50V	22μF/25V
LMO78_15-1.0	10μF/50V	22μF/25V

Note

- C1 and C2 (C3 and C4) are required and should be connected close to the pin terminal of the module.
- 2. The capacitance of C1 and C2 (C3 and C4) refer to table on the left.
- To reduce the output ripple furtherly. C2 and C4 can be increased properly if required, and tantalum or low ESR electrolytic capacitors may also suffice.
- 4. When the products are used as shown in the "positive and negative output paralleling application circuit", an inductor named as LDM up to $10\mu H$ is recommended in the circuit to reduce the mutual interference.
- 5. Cannot be used in parallel for output and hot swap.

EMC solution-recommended circuit




Part ○ in the Fig. 5 is for EMS test, part ② is for EMI filtering; parts and can be added based on actual requirement.

FUSE	MOV	LDM1	CO	C1/C2	C5	LDM2
Selected based on the actual input current from the customer	S20K30	82µН	680μF /50V	Refer to table at typical application circuit	4.7μF /50V	12µН

Mechanical dimensions and footprint

Note: Grid 2.54*2.54mm

Pin-Out				
Pin	Positive Output	Negative Output		
1	Vin	Vin		
2	GND	-Vo		
3	+Vo	GND		

Pin section tolerances :±0.10[±0.004] General tolerances:±0.50[±0.020]