Application Notes Guide of IGBT Driver 2019

I. Product Overview

A. Definition of IGB

B. Definition of IGBT Driver

C. Definition of DC-DC Converter for IGBT Driver

D. Product Lines of IGBT Products

II. Applications

A. Typical Applications of IGBT Driver

B. Method of Detecting Input Signal

C. Values of IGBT Gate Resistance

D. Output Power of IGBT Driver

E. Selection Guide of Output Capacitor

F. Fault Detection and Feedback Principle

G. Parameter Description

H. Methods of Invalidating Protections

III. Special Notes

A. Notes for Triggering Under-voltage Protections When Powering On

B. Method of Estimating and Examining IGBT Performance

C. Avoiding Wrongly Triggering the Protection Functions

D. Avoiding Wrongly Triggering IGBT during Body Diode’s Reverse Recovery

IV. Precautions
I. Product Overview

A. Definition of IGBT

IGBT (Insulated Gate Bipolar Transistor) is a switching component with two characteristics: high-power as bipolar transistor, high-speed converting and voltage driven as MOSFET.

With input characteristic similar to MOSFET, IGBT is a component driven by voltage. As above diagram shows, IGBT’s turn-on and turn-off depend on the voltage between G and E. And due to gate capacitance, certain circuits are recommended to charge and discharge input capacitor ($C_i = C_{ge} + C_{cg}$) so as to switch on and off IGBT.

B. Definition of IGBT Driver

Diagram 2: IGBT driver’s function
IGBT driver is a component which rapidly charges and discharges IGBT gate according to control signals, and make it switch on and off normally. Actually, the essential function of IGBT driver is to amplify the control signals. For IGBT emitter or IGBT collector, generally speaking, their potentials will change periodically in applications. To avoid it, IGBT driver provides signal isolation to resist common-mode interference.

C. Definition of DC-DC Converter for IGBT Driver

DC-DC converter for IGBT driver is a component that powers IGBT driver and offers electric isolation to reduce common-mode interference as well as to resist influence caused by changeable potentials of IGBT emitter or IGBT collector in practical application. Built-in-current IGBT driver is also available to save the volume of driver board, support electric isolation and simplify users’ interface design.

Diagram 3: Relations between IGBT, IGBT Driver and DC-DC converter for IGBT Driver

D. Product Lines of IGBT Products

www.gaptec-electronic.com/IGBT...
II. Applications

A. Typical Applications of IGBT Driver

Pin-out details:

1: Fault detection of over current or short-circuit
2: Short-circuit detection time
4: Positive power input
5: Signal output
6: Negative power input
7: Protection threshold voltage
8: Fault signal input
13: Negative signal input
14: Positive signal input

Diagram 6: Application of non-built-in isolated DC-DC Converter QC962-8A

As above diagram, the gate turn-on voltage is usually +15V and turn-off voltage ranges from -6V to -10V. Therefore, the gate current should have dual channels (positive and negative), externally provided. Moreover, IGBT driver’s reference level is different from IGBT’s because there is no connection between IGBT driver and IGBT emitter. That is to say, protective threshold voltage will change when the negative voltage ranges from -6V to -10V. Because other output pins take negative input current as a reference while saturated voltage drop takes IGBT emitter as a reference. To solve it, GAPTEC IGBT drivers are designed with the following adjustable threshold voltage function (pin 7) which is more flexible for user’s design.
Pin-out details:

1: Positive power input
2: Negative power input
3: Positive signal input
4: Negative signal input
8: Positive output of isolated power
9: COM of isolated power
10: Negative output of isolated power
11: Signal output
12: Internal power collector
13: Fault detection of over-current of short-circuit
14: Soft turn-off time
15: Fault signal output
16: Short-circuit detection time

Diagram 7: Application of built-in DC-DC Converter QP Series

Above QP series (QP12W08KS-37) integrates built-in DC-DC Converter, which is the required power supply for IGBT gate and only requires single power, offering dual outputs of positive and negative, easier to use.
B. Method of Detecting Input Signal

There exists a high-speed opto-coupler integrated LED and a resistor in series at the terminals of IGBT signal input. Its input impedance please refer to datasheet.

Diagram 8: Input method of IGBT driver

Take HIBT_151508D3.75 as an example, according to above diagram and datasheet, the input current ranges from 10mA to 20mA when IGBT powers on (typical value: 16mA). So, the R1 should be appropriately adopted to make input current close to 16mA when designed.

\[\text{lin: Input current. It depends on users' design and should be within } 10-20 \text{ mA.} \]
\[\text{Uce: Voltage drop of IGBT driver's internal opto-coupler (1.7V)} \]
\[\text{Rin: Internal resistance of IGBT driver (150}\Omega) \]
\[\text{Vcc: Voltage when signal is at high level. It depends on users' design.} \]
\[\text{Vl: Voltage when signal is at low level. It depends on users' design.} \]

If supply voltage VCC is 5V, then R1 should be 51Ω in 0603 packaged.

If IGBT powers off, U2 should be high-level output without current between input signal terminals. Attention: When selecting U2, a component with open-collector outputs is not recommended. Otherwise, pin 4 will have high resistance and a poor performance of resisting common mode interference.
C. Values of IGBT Gate Resistance

Limitation 1: Maximum Output Current of IGBT Driver

Diagram 9: Typical circuit driven by IGBT gate

In general, IGBT driver has a rated maximum output peak current and the output current of IGBT driver equals to IGBT gate current. But practically, peak current does not completely depend on the driver but also the gate resistance R_g and the gate capacitance C_g, etc. The peak current signifies the driver’s signal amplifying ability and its limited gate peak current. Therefore, the driver’s output peak current should be within the limited range when designing the driver’s external circuit.

Ideally, the formula of gate peak current is:

$$I_{\text{peak}} \leq \frac{V_{\text{cc}} - V_{\text{ee}}}{R_g + R_{g \text{int}}} \leq 5A$$

V_{cc}: positive power of IGBT driver

V_{ee}: negative power of IGBT driver

R_g: gate resistance

$R_{g \text{int}}$: IGBT’s gate inner resistance. For more details please refer to datasheet.

Normally, calculation errors will appear when the driver’s output waveform is not sharply fluctuating (rise time within 1 μs). But for GAPTEC products, if IGBT gate signals are not fluctuating, the gate resistance calculated by formula can be reduced to 50%. Also, the actual value of gate peak current can be confirmed only by measurement. In any case, the gate current should be no higher than its rated value and the gate resistance should be within the limited range.
Limitation 2: Avoiding Oscillation Phenomenon of IGBT Gate

Diagram 10: Typical IGBT Gate Drive Model

Actually, stray inductance of loop circuits may affect signals. To simplify the analysis as above diagram, supposing \(R'_{g} = R_{gon} = R_{goff} \) and \(L'_{g} = L_{gg} + L_{gon} = L_{gg} + L_{goff} \), the loop equals to the famous RLC second order circuit whose formula is as below:

\[
L'_{g} \frac{d^2i(t)}{dt^2} + R'_{g} \frac{di(t)}{dt} + \frac{i(t)}{C_{gg}} = 0
\]

To avoid oscillation, it should be ensured that RLC second order circuit response appears over-damped.

\[
R'_{g} = R_{g} + R_{g\text{ int}} > 2 \sqrt{\frac{L_{g}}{C_{gg}}}
\]

According to above two limitations, the gate resistance should be within the limited range. And after the value of \(R_{g} \) is confirmed, the two limiting conditions should be tested and verified.

Gate Resistance Value

Generally speaking, the driver’s output peak current will increase if \(R_{g} \) decreases and the switching noise increases accordingly. Then the switching loss will decrease when the speed of power-on and power-off increase, and vice versa. Therefore, users can firstly select the gate resistance as following table and fine tune it in practical applications. Please remember that the actual gate resistance should be confirmed by measure.
Table 1: Recommended values for IGBT gate resistor

<table>
<thead>
<tr>
<th>IGBT Rated Current (A)</th>
<th>50</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended R_g (Ω)</td>
<td>10-20</td>
<td>5.6-10</td>
<td>3.9-7.5</td>
<td>3-5.6</td>
<td>2-3Ω</td>
</tr>
</tbody>
</table>

Gate Resistor Power

Diagram 11: Gate resistor current wave

After the gate resistance confirmed, the package is determined by power. As above diagram, current waveform of gate resistor resembles a discontinuous triangular wave. And the waves of charging and discharging look the same in opposite directions. Assuming that duty ratio of IGBT signal is 0.5, peak current I_{peak} and duration of pulse t_p, then the formulas of gate current valid value and gate resistor power are as below:

$$i_{g\ (RMS)} = i_{peak} \sqrt{\frac{2 \times t_p \times f}{3}}$$

$$P = \frac{2}{3} \times i_{peak}^2 \times t_p \times f \times R_g$$

Notes:

$i_{g\ (RMS)}$: Gate current valid value

I_{peak}: IGBT gate drive peak current, measured by test

T_p: Duration of pulse, measured by test

f: IGBT switching frequency

R_g: Gate resistance
D. Output Power of IGBT Driver

Diagram 12: Characteristics of IGBT driver output terminal

Instantaneous Power (Current)

Output terminal of IGBT driver is linked with a totem-pole amplifying circuit. And its current I_g is usually pulsating as the above typical wave because the object it drives is equivalent to capacitive load. The maximum output current of IGBT driver depends on the degree of totem-pole amplifying circuit’s tolerance. For an IGBT driver, I_g should be within the limited range; otherwise, the driver will be damaged. Generally speaking, for an IGBT driver with a large input capacitance, the higher requirements for drive capability are, the greater endurance ability of instantaneous current should be. GAPTEC has developed two types of IGBT drivers with endurance ability of instantaneous current ±5A and ±8A respectively.

Average Output Power (Current)

IGBT driver’s average output power is the basis of IGBT’s design and can be calculated by the following formula:

\[
I_g = Q_g \times f \\
P_g = (V_{CC} - V_{EE}) \times I_g
\]

I_g: IGBT’s average gate current
V_{CC}: Positive power of IGBT driver
V_{EE}: Negative power of IGBT driver
Q_g: Gate charge (For more details please refer to datasheet).

It should be converted into actual driving voltage amplitude:
f: Switching frequency of the driver signal

No matter whether it is a built-in power driver or not, Ig calculated by the formula should be output by the positive and negative channel of IGBT driver.

Diagram 13: Example of IGBT gate C/V changes

Above IGBT module has 200nC charge when powered by a 0V-15V power module. According to IGBT characteristics, there exists no Miller Effect in the range of below 0V. Therefore, its slope should appropriately be equal to 0V-10V.

In conclusion:
0V-15V: IGBT gate charge is 200nC
-10V-0V: IGBT charge is 25nC.
-10V/+15V voltage swing and 20KHz switching frequency: Average output current of IGBT gate is 4.5mA. In these conditions, the power consumption of IGBT is 0.1125W.
E. Selection Guide of Output Capacitor

With IGBT driver’s pulsating load, the instantaneous current is so high that it generates ripple in the output voltage, which will be added to gate drive signals and cause distortion. The smaller ripple is, the higher SNR (Signal to Noise Ratio) of drive signal will be. It is recommended that a paralleled electrolytic capacitor respectively connected to positive and negative power so as to ensure the stability of voltage. Some recommendations are as below:

Capacitance and ESR

IGBT driver’s output ripple is related to output capacitance and ESR. Lower power supply ripple output (peak voltage less than 200mV) can only be achieved by:

\[
C \geq C_{\text{min}} = \frac{i_g \times dt}{du} = \frac{Q}{\Delta U} \quad ; \quad R_c \leq R_{c \text{max}} = \frac{\Delta U}{I_{g \text{ peak}}}
\]

Take IGBT with gate charge and discharge capacity of 2.5μC as an example, in the worst situation the current will reach ±5A when gate voltage is ±15/-10V. To ensure that power supply ripple is less than 200mV, equivalent capacity should be at least 12.5μF and ESR should be no more than 40mΩ. But above formulas just take ripple into consideration, other factors can also lead to voltage ripple’s increasing and should be taken into consideration.
Seen from the outputs, aluminum electrolytic capacitor is recommended because it has enough ESR value and ripples which depend on ESR. You can select your capacitor based on your own needs of ESR. If you have a higher requirement, you can use several capacitors in parallel or electrolytic capacitors and ceramic capacitors in parallel, to achieve the goal.

Maximum Ripple Current

High ripple current may affect the life of electrolytic capacitor. So, the capacitors should be properly used as guided. According to the formula of gate resistor current, the ripple current of each electrolytic capacitor should be:

\[
i_{\text{RMS}} = i_p \sqrt{\frac{t_p \times f}{3}}
\]

Above values can be measured by test, but the allowable value of ripple current should be lower than the calculated.

F. Fault Detection and Feedback Principle

Fault herein mainly means short circuit in IGBT bridge arm. Once it happens, IGBT will be in desaturation status and Vce rapidly rises, which will cause more power consumption of IGBT module. To avoid it, the power should be cut off within certain seconds once short circuit happened. The sustainable short-circuit time is limited by the energy of IGBT. The relevant rated value please refer to datasheet.

Generally speaking, if the gate voltage is 15V, it should be shut off within 10μs after desaturation to avoid damage.

![Diagram 15: Principle of fault detection and feedback](image)
Fast response is an advantage of the driver’s built-in protection. It needs to transmit the fault signal to CPU at input terminal and then stop gate drive signal accordingly if gate drive circuit is set separately from the fault detecting circuit. Obviously, in this way the short-circuit protection will work faster and more reliable than by controller. For more information about pins please refer to datasheet. Above diagram shows the principle of fault detection and its feedback.

The driver detects the collector potential of IGBT module by fast-recovery rectifier diode. When the input signal is at high level (IGBT powers on), the diode will turn off once Vce exceeded the nominal value.

Short-circuit detection time delay: Protection won’t be triggered if fault is solved during this period. Fault output pin: If the fault is not solved in the first stage, then fault output will be at low level. Soft turn-off time: If the fault is not solved in the first stage, then the driver will lower gate voltage and makes IGBT power off. Protection reset time: The driver will be timing after the first stage is over. And the gate voltage cannot increase in certain time.

Self-recovery: The driver is detected step by step and will withdraw short-circuit protection once the fault was solved. Otherwise, the protection will be triggered again and then it continues and moves to the next state till the fault is solved.

G. Parameter Description

Diagram 16: Definitions of short-circuit detection time delay, soft turn-off time and protection reset time
Short-circuit Detection Time Delay

Definition: Time that IGBT gate voltage remains high level in fault condition (Ttrip)

Function: If Vce isn't down in time at the beginning of IGBT powering on, it will wrongly trigger short-circuit protection. To avoid it, the driver is designed with pins to adjust the time by users. Adjusting method can be found as below or refer to datasheet.

Soft Turn-off Time

Definition: Time that IGBT gate voltage powers off down to 0V in fault condition (Tcf)

Function: Once short circuit happened, IGBT will power off soon and cause high current surge, and voltage overshoot in collector. However, soft turn-off protection helps IGBT slowly lower gate voltage and reduce current surge efficiently. The rated time depends on users themselves only if it was within adjustable and available ranges, especially for GAPTEC products designed with internal soft turn-off time.

![Diagram 17: Adjusting method of short-circuit detection time delay and soft turn-off time](image)

To meet various applications, GAPTEC IGBT drivers are designed with adjustable short-circuit detection time and soft turn-off time. Above diagram illustrates a typical product HIBT_151509D3.75 adjusting method. In fact, different products have different methods. For more details please refer to datasheet.
Generally, IGBT module can endure short-circuited fault within 10μs but the final solution should meet the formula T_{trip} + T_{cf} \leq 10μs and refer to the measured value.

Protection Reset Time

Definition: Time that since IGBT gate voltage powers off to the next reset in fault condition (T_{timer}).

Function: After solving the fault, IGBT self-recovers to normal operation without resetting. The rated value please refer to datasheet.

H. Methods of Invalidating Protections

Diagram 18: Method of Invalidating Protection for QC series

Pin-out details:

1: Fault input (useless)
4: Positive output power
5: Drive signal input
6: Negative power input
13: Negative drive signal input input
14: Positive drive signal input

Diagram 18: Method of Invalidating Protection for QC series

GAPTEC Electronic GmbH & Co. KG, Robert-Bosch-Straße 28, D-63225 Langen
Tel.: +49 (0) 6106 62598-100, Fax: +49 (0) 6106 62598-102, info@gaptec-electronic.com
When will protections need to be invalidated?

1) Checking and revising the system, especially when separating drive circuit from main circuit.
2) Users think that there are no needs of using IGBT short-circuit protection. They have estimated it at the start of designing the system.

Diagram 19: Method of Invalidating Protection for QP series

Connecting IGBT driver's fault detection pin by a 4.7Ω resistor with IGBT emitter, the pin voltage will be lower down to its rated value and the protection will be invalidated. If IGBT driver is designed with no protections, then it can be simplified, and all parameters mentioned above will not be needed. But please remember to dangle the relevant pins of driver.
III. Special Notes

A. Notes for Triggering Under-voltage Protections When Powering On

Under-voltage protection is to ensure low level for starting up. If power supply system fails, it will cause less voltage and the drive voltage cannot meet the requirements of IGBT saturated conductivity. So, the drive output voltage of IGBT driver should be at low level.

There exists slowly rising voltage during the driver powering on and working. During this time, the power supply voltage is lower than the normal one and meets the requirement of under-voltage protection.

It will not damage IGBT when turn-off but will do when turn-on. That is to say, IGBT control can only be a certain sequence control. Because recovery time of power supply voltage is uncertain, it may damage the IGBT once IGBT turned from low level into high level in advance. Therefore, it is recommended that ensuing IGBT input control signal is at low level. In other words, when voltage is normal, the driver output can be at high level only after the input control signal changed from low level into high level.

B. Method of Estimating and Examining IGBT Performance

Diagram 20: Principle of GAPTEC DEMO board and its terminals

It is recommended to estimate IGBT performance and test as Fig. 6 and Fig.7. Actually, GAPTEC’s DEMO board is specifically designed for estimating IGBT performance. If you are interested, please contact sales or FAE. DEMO board integrates all functions of IGBT driver, including gate resistor Rg, fault detection port, etc. Firstly, collecting external devices as above diagram such as power supply, signal generator and IGBT module, then measuring main voltages by oscilloscope and lastly comparing the differences between measured values and rated values, the overall assessment is done and over.
In addition, some DEMO boards connect the driver and the driver plate by clamping so as to facilitate the replacement of different products or detect whether the driver is of high quality or not. Test sequences are recommended as follow:

1) To Test whether power supply for the driver works normally or not (optional)

For built-in power-type driver (QP Series), testing performance of power comes first, including power input nominal value and power output voltage whether within the limited range. But it is not suitable for non-built-in power-type driver.

2) To test whether signal amplification function works normally or not

Set the nominal value of power input and its driver waveform at the input terminal. Then compare waveform of the input signal and the output signal before the gate resistor. Next, test the time of signal rising delay & falling delay and output rising & falling time. Lastly, check the results with datasheet.

3) To test whether protection functions work normally or not

First disconnect IGBT collector and DEMO board, and then set the nominal value of power input and its driver waveform at the input terminal. Next, test short-circuit detection time delay, soft turn-off time and protection reset time. Lastly, check the results with datasheet.

C. Avoiding Wrongly Triggering the Protection Functions

Protection functions of GAPTEC QP and QC series IGBT driver are mainly achieved by detecting under-saturated pressure drop of IGBT. So, more attention should be paid to IGBT start-up time particularly in high-power applications to reduce the interference in the switching process which is harmful to the driver. The following reasons are for your reference:

Disordered IGBT Start-up Setting

Normal start-up order: short-circuit detection time delay > Gate Rising Time + IGBT start-up time
Above is necessary to avoid wrongly triggering the protection functions. Generally, IGBT start-up time is a specific rated parameter. To achieve the goal, it's recommended to reduce the gate signal rising time (mainly reducing the gate resistance) or extend short-circuit detection time delay.
IGBT Switching Noise

Oscillation of the collector affects fault detection of the driver when IGBT powers on. Because it may wrongly trigger the protection functions caused by the signal transient value (which actually is superposed with certain switching noise) reaching to the protection threshold voltage. Suppressing the switching noise will be the best solution to it. Unfortunately, for the whole system, the cost will be increased, and the efficiency will be reduced. Therefore, extending short-circuit detection time delay from beginning to end is recommended.

Early in the design, users can adjust the short-circuit detection time delay by pins and preset a longer time such as 5~6μS without damaging IGBT, then optimize it by test after the system normally operates.

D. Avoiding Wrongly Triggering IGBT during Body Diode’s Reverse Recovery

The following diagram shows the principle of wrongly triggering IGBT when dv/dt occurs. IGBT2 switches

Body diode of IGBT2 is in reverse recovery status and its voltage increases. This change is recorded as dv/dt. So, the current I is C_{res} (reverse transfer capacitance of IGBT) multiplied by dv/dt, which makes gate voltage increase through the gate resistance R_g. Once the gate voltage exceeds the total value of negative IGBT2 gate voltage and threshold voltage, wrongly triggering IGBT2 will occur and the two IGBT short-circuit.
Based on it, it’s recommended to:

- design a parallel capacitor between gate and emitter (recommended value: < 0.1× Cge)
- increase gate resistance (switch off)
- increase negative gate voltage amplitude

Above methods should be firstly confirmed according to actual requirements. Please note that they have effects on switch loss and drive loss.

IV. Precautions

A) Internal DC-DC isolated power supply for HIBT_D3.75 series can be only used for driving itself, not as external power source.

B) The wire connecting the driver and IGBT gate as well as emitter should be no longer than 1m.

C) The wire connecting the driver and IGBT gate as well as emitter should be twisted pair.

D) Appropriate gate resistance can be increased to reduce IGBT high voltage peak in collector when switching off.

E) Setting different gate resistance values is available for IGBT powering on and off.

F) External capacitor or resistor should be close to the driver if adjusting soft turn-off time and short-circuit detection time delay is necessary. At the same time, the selected values should be within the recommended ranges.

G) It’s recommended to select electrolytic capacitors with low ESR and place near to the driver.

H) The withstand voltage of FRD D1 which connects fault detecting pins and IGBT collector should be higher than peak voltage of the collector when switching off the IGBT. Also, more diodes in parallel is available.